Three Lectures on Hypergeometric Functions
نویسنده
چکیده
In this course we will study multivariate hypergeometric functions in the sense of Gel’fand, Kapranov, and Zelevinsky (GKZ systems). These functions generalize the classical hypergeometric functions of Gauss, Horn, Appell, and Lauricella. We will emphasize the algebraic methods of Saito, Sturmfels, and Takayama to construct hypergeometric series and the connection with deformation techniques in commutative algebra. We end with a brief discussion of the classification problem for rational hypergeometric functions. Resumen. En este curso se estudiarán las funciones hipergeométricas multivaluadas en el sentido de Gel’fand, Kapranov, y Zelevinsky (sistemas GKZ). Estas funciones generalizan las funciones hipergeométricas de Gauss, Horn, Appell, y Lauricella. Se explorarán los métodos algebraicos de Saito, Sturmfels, y Takayama para construir series hipergeométricas y la aplicación de técnicas de algebra conmutativa. El curso concluye con una breve discusión del problema de caracterización de funciones hipergeométricas racionales.
منابع مشابه
A Subclass of Analytic Functions Associated with Hypergeometric Functions
In the present paper, we have established sufficient conditions for Gaus-sian hypergeometric functions to be in certain subclass of analytic univalent functions in the unit disc $mathcal{U}$. Furthermore, we investigate several mapping properties of Hohlov linear operator for this subclass and also examined an integral operator acting on hypergeometric functions.
متن کاملIntegral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant
Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.
متن کاملApplication of some integral transforms and multiple hypergeometric functions in modeling randomly weighted average of some random variables
This article has no abstract.
متن کاملLectures on multiloop calculations
I discuss methods of calculation of propagator diagrams (massless, those of Heavy Quark Effective Theory, and massive on-shell diagrams) up to 3 loops. Integrationby-parts recurrence relations are used to reduce them to linear combinations of basis integrals. Non-trivial basis integrals have to be calculated by some other method, e.g., using Gegenbauer polynomial technique. Many of them are exp...
متن کاملLommel Matrix Functions
The main objective of this work is to develop a pair of Lommel matrix functions suggested by the hypergeometric matrix functions and some of their properties are studied. Some properties of the hypergeometric and Bessel matrix functions are obtained.
متن کامل